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We consider a two-dimensional unsteady problem of diffraction of a plane acous- 

tic wave on a closed, thin, elastic, circular cylindrical shell. We use the method 
of double integral transformations; Laplace transformation with respect to time, 
and Fourier transformation with respect to an angle, and obtain the inverse trans- 
forms in .approximate form using the method of steepest descent and of determin- 

ing residues at the poles. We derive the asymptotic formulas for the pressure 
fields behind the fronts of the emitted, reflected and diffracted waves, and ana- 
lyze the influence of the shell elasticity on all the above waves. The state of 

the problem is elucidated in the monographs and articles [l - 241 and the ma- 
thematical apparatus used here is that developed by Friedlander [l, 2, 131. 

1. Statement of the problrm. A closed, thin, elastic, circular cylindrical 
shell is at rest in an unbounded, ideal compressible fluid, and an acoustic wave 

Pl (5 0 = Peg (W (Q, LE = t + g (1.1) 

impinges on this shell along the normal to its longitudinal axis, 

Let us consider the following two-dimensional unsteady problem: to find the pressure 

field in the wave p2 (pa is the sum of the emitted, reflected and diffracted waves) caused 
by the action of the wave p1 and satisfying the following wave equation as well as the 

initial and boundary conditions: 

(Vo”- &= 0, vo2=f+$) +;?i-$ 
r 

We assume that the solution is bounded within its domain of definition. 
The time is counted from the initial instant when the incident wave comes in contact 

with the shell surface at the point with coordinates r- = 1, 8 = 0. 
The equations of motion of the shell correspond to the linear, Timoshenko-type theory 

LijUj = q6i3 (Lij = Lji, i, i=1, 2, 3) (1.3) 

L,,= 
( 

-$-A$ -x2, 
) 

Ll, = x2, a 
Ll, = (1 + qjg- 

L,, = a2 
( 

& - h2 2&) - x2, L,, = - x2 & 
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In the above formulas (1.1) - (1.3) we use the following notation : 

t=CT 
RO 

> 
u _ u0 

u 

1 --, u3z-I 
RO Rll 

61 = 

c;= E 
p1 (II - G) ’ 

c,” = EkT 
2Pl (t + v) 

Here R and 8 denote the radial and angular coordinates, T is time, X is the coordi- 
nate pointing in the direction opposite to the direction of propagation of the incident 

wave ; p and C are the fluid density and speed of sound in the fluid ; E, v and Pi 

denote the modulus of elasticity, Poisson’s ratio and the shell material density, respec- 
tively ; R,, and 2 are the radius and the thickness of the shell ; Ue and U, denote 
the tangential and radial components of the shell displacement vector, u, is the angle 

between the normal and the median shell surface, C, and c, are the velocities of pro- 

pagation of the elastic wavefronts in the linear theory of thin Timoshenko-type shells, 

kT is the numerical shear coefficient, ,UIJ is a constant with the dimension of pressure, 
g is an arbitrary bounded function defining the law of pressure variation in the incident 

wave ; H is the unit Heaviside function and 6ij is the Kronecker delta. 

2, Form&l rolution, We obtain a solution of the problem using the method of 
integral transformations. We perform the integral Laplace transformation over the time 
t , and the integral Fourier transformation over the angle 0 . Let us write the formulas 

for the forward and inverse transformations 

fL try e, s) = & i iLF (F, 0, s) eioe do, f(F, c. 1) = 

a,+icm 
1 

z!z s 
IL (F, 0, s) I? ds, a0 > 0 

Here s denotes the Laplace transformation parameter and o is the Fourier transforma- 

tion parameter. 
We carry out the Fourier transformation over the angle 8 under the assumption that 

the function f (F, 0, i!) is defined not only in the physical domain F > 1, --x < 8 < 

n, t > 0, but also on the Riemannian surface the sheets of which are defined by the 
formula 

(2k - 1)~_~<(2k+ 1)~ k=....--i.o*i,.*. 

Since we know in advance that the function f (F, 8, t) undergoes discontinuities on 
certain space- time characteristics. we shall regard f (F, 8, t) as a generalized function 
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(distribution in the Schwartz sense). Using the displacement theorem, the relation E = 
1 - r cos 8 and the integral representation 

00 

1~ (p) = - & 1 exp (sr cos 0 - iot3) cl6 
--cc 

we obtain the following LF transformation of the incident wave: 

plLF (f, 0, s) = - A0 (s) I, (sr), A* (s) = ZJcp, gL(s) e-u (2.1) 

For the zero initial conditions the ,!,F transformation of the wave equation (I. 2) assumes 
the form 

(2.2) 

Let us write the solution of (2.2) bounded for r + 00 , in the form 

PZLF (r, w, s) = -4% (8) Kll (sd (2.3) 

where &, (.V) and IU (ST) are the modified Bessel functions and A, (s) is an unde- 

fined coefficient. 

The LF transformations of the equations of motion of the shell (1.3) and of the con- 

ditions of contact at r = 1 , together constitute the following system of algebraic equa- 

tions : 

aL.~uLF = 
$3 I 

(2.4) 

ay = ar (i, !=I, 2,3) 

&F = 
3 - &&(PP + P,“J Ir+ 

allLF = - (co2 + A2 + x2), altLF = x2, alSLF = io (1 + x2> 

a22LF = - [a2(02 + s2h2) + x21, aSSLF = - i6&, aSaLF = &c2 +,&a +I 

We solve the above system by substituting (2.1) and (2.3) into (2.4), thus obtaining the 
following LF transformation for the pressure pa : 

(2.5) 

Ds = detrain (i,j=$.2,3), Da = det~~a~F~ (i, !=1,2) 

Here and in the following a prime denotes the derivative with respect to the argument. 

8, Olvrt riprnrionr rnd thr rtymptotioc of thr LP trrarfox- 
mation:, Since the process of inverting the formal solution (2.5) is difficult when 
the parameters o and s are arbitrary, we shall now construct the asymptotics of the for- 
mal solution under the assumption that the Laplace transformation parameter s is large, 
real and positive. We replace the modified Bessel functions and their first derivatives by 
the asymptotic Olver series [25 - 273. Substituting these series into (2.5) and assuming 
the parameter s to be real and large, we obtain 

Pi?” - - Aa (s) (Zns?p xxx2 [1 - s-1 (x3 + x,) + 0 {s-“)I x (3.1) 

oxp &J 

x1 -- ( I -j- sgy‘, *B = fs2+m2fb3- dlS2D2 

(s2 + 0 ) 2 ?h Da+ 61s2132 
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x3= & g-70" 1+ [ $ ( g-‘1(1+ f)-“’ 

x4= &[3--5% (l+%)-‘](I+ $) 
-% 

x5=-r 1+ 
( 

~)“*+2(1+~)“~+$~~~h~-2$8~~h~ 

Below we shall show that the above inverse LF transformation corresponds to the 
asymptotics of the reflected and emitted waves near the front. By the emitted waves we 

mean the waves generated in the fluid by the process of wave propagation taking place 
within the elastic shell. 

4. Langrr’r raprarantrtlon and the rrymptotlc, of tha LF 
trrnrformrtion8 of tha diffrrctad wIva8 with 8 +w. 

Consider the transition region in which 

0 N i [S + as’18 + 0 (s+a)l, 1 cc 1 - 1 (4.1) 

and replace in it the modified Bessel functions and their first derivatives by the Langer’s 

asymptotic formulas [2, 281. Using these formulas and the expression for the Wronskian 
of the modified Bessel functions we can show that for large, real values of the parameter 
s the LF transformation (2.5) assumes the form 

pkF (r, 0, S) - D~$J:;s~_(;;~;~;s) 11 + 0 (s-91 (4.2) 

Below we shall show that the inverse of the LF transformation (4.2) corresponds to the 
asymptotics of the diffracted waves at the front. By diffracted waves we mean the waves 
generated in the fluid by the passage of the incident wave bending around the shell. 

6, Invarrton of tha Fouriar trrnrformrtfon, 
5. 1. Reflected and emitted waves. We write the inverse Fourier transfor- 

mation of the LF transformation (3. I) in the form 

psL (r, 0, S) - As (s) I (s), A3 (s) = pogL (s) e-’ (23~)“” (5.1) 

I(S) = 5 K(o)exp [Sk(o)] do 

K (0) =mXIXl [I - s-l (X3 + x4) + 0 (P)l, k (0) = x5 + iwtkl 

The integrand function has simple poles determined by the roots of the denominator in 
the expression for x, in (3.1). For large, real and positive values of the parameter S the 
coordinates of the poles can be written in the form of asymptotic expansions in inverse 

powers 
o1 - + ihs [ 1 + rls-* + tls-3 + 0 (s-“)I, (5.2) 

o2 - & ihs [ 1 + r2se2 + tasd3 + 0 (sm4) J, r2 = rl aa (:1_ x”) 
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The poles define the relative velocities of propagation of the elastic wavefronts in the 
shell : h-l for the membrane ( ol) and flexural (os) waves, xh-r for the shear (e&J 
wave, and the critical angles of appearance of the emitted waves 

Cll, = I&* = 2 arcsin h - arcsin 3 , Cl,, = 2 arcsin -Z - arc&r --$ x 

We shall distinguish three separate zones, depending on the angle of observation 0 

fJ< @,< %*t 2) 61, < @ Q %&? 3) @,* -c 8 

In the illuminated region 0 < ] 8 1 < n/2 the ~~a~formation of the reflected 
wave determined in the approximate form from (5.1) by the method of steepest descent, 
it exists in all three zones. When the angle of observation 0 increases and exceeds 6r,, 
then the L-transformation of the reflected wave must be supplemented by the L~trans- 
formations corresponding to the emitted waves generated by the membrane and flexural 
waves propagating through the shell. When the angle of observation exceeds Us,, we 
must also include the L-transformation of the emitted wave generated by the shear 
wave propagating through the shell. The L-transformations of all emitted waves can 
be found by evaluating the residues at the poles of the integrand function (5-l)* 

The method of steepest descent enables us to write the integral in (5.9 in the form 
of a series in powers of the large parameter s 

The coordinate of the point w = o, of steepest descent is given by the equation 
k’(w) = O,~dh~~eform 

% = ia sin fk o* = is sin y, 6 + y - 2s = 0 (5.4) 

Figure 1 gives the geometric interpretation 
of the angles 0, p and y where fl is the 
angle of incidence and 8 is the angle of 
observation. 
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Substituting the formulas (5.3) and (5.4) into (5.1) and performing simple manipula- 

tions, we obtain 

psL (r, 8, s) - p*gL (s) e-=* [ 1 - s + y + nsvl + 0 (sea)] (5.5) 
-m 
2 

p* = po (2’3- q”*, a, = 1--220sp+rcos~ 

m = 6 [(I - pasin* p) COSfi]-l, n = 2 Cpj(O*) 

I-1 

The Cauchy theorem on residues at the poles yields the L -transformations of the emit- 

ted waves. Substituting into (3.1) the coordinates of the poles oj (j = 1, 2; 3) given 
by (5.2), we obtain 

Res [paL (r, 8, s); 0~1 = A, (s) (2n~)-%t,f343~-~ ii - s-l (x, + 

Neglecting terms of the order of a2 and .ss2 which are small compared with unity and 
performing simple manipulations, we obtain the following L. -transformations of the 
emitted waves : 

p2L (r, 0, S) = 5 PjgL (s) esai [~js-(a.i+s’z) + njs-(oi+sh) + 0 (s’-(“i”“))] (5.6) 

j=l 

61 X%51 
ml = - 

P1/1’ 
m, = - 

u*?ba (1 - ny VI - I.% 

ms = 61 n= 
nl/z=-@' 

?23 = - 2aW (xs - 1) 

‘J1 = u, = 2, a, = 0, a, = - I, - $ 21 A-?+ 
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a2 = -1, - f x2z2h-1a-2 (1 - x2)-%+ 

a, = - 1, - ; Q&-l (x3 - )‘“y/cs- 

II = Z2 = 1 + hzI + l/r” - h2 - 2 61 - h2 

21 = z2 = If&l + arcsin+ - 2 acrsin h 

23 = 1 tlk 1 + arcsin & - 2 arcsin $ 

81, = 0 +2nk, k=O, *i, -t_2 ,... 

The coefficients n, and n, must be made equal to zero, since the asymptotic expansions 

for the roots or and os are insufficiently accurate, The index k denotes the number of 
rotations performed by the corresponding emitted wave. 

5.2. Di f f r a c t e d w a v e s . We write the inverse Fourier transformation of the 

LF- transformations (4.2) in the form 

The integrand function iiy5.7) has simple poles 61 = ok which are defined by the 
roots of the denominator. Substituting the Langer’s asymptotic formulas [Z, 281 into 

(5.7) and assuming that the parameter s is large and real, we obtain 

@k - f i h + a& + 0 (s-*:8)] 

where a@ obtained by the equation 

Ai’ (5) = 0, z = -_2’& 

(5.8) 

(5.9) 

Here Ai (2) is the Airy function, and the roots z = uk’ of Eq. (5.9) can be found from 

tables [25]. 
It follows from (5.8) that the diffracted waves propagate at the velocity approximately 

equal to the speed of sound in the fluid. The elastic properties of the shell do not affect 
the coordinates of the poles okto within the accuracy of the relation (5.8). 

We use the Cauchy theorem on residues at the poles to evaluate the integral (5. ‘7). 
Using the relations 

7& K,’ (s) - - ins-l c f (a) exp ($ ino) 

a 
76 o=wlr = - I 

is-‘Jr 2 
I au ckark 

the Langer’s asymptotic formulas [2, 281, the formulas (5.8) and (5.9) we obtain, after 
simple manipulations, 

* 

p2L(r, 8, s) - 2 
k=l 

i gL ($) rl exp (7%~ - Tss--I/3) [s-‘/e - &.s-‘!p -+ 0 (s-*‘;)I (5.10) 

7 = [2”‘n’l’(r2 _ iy/dak &2 (__2-“3ak)]-l 



Ya = -p~++-i -+-4)“~“+arcC09~ 
yg =tf a, Je[-+arccos~) f 

We note that the values of the Airy functions Ai (a$ ~orr~s~nding to the roots of the 
equation Ai’ ($1 = 0 can be found from tables 1251. 

8, rnv~Pt& LIplrccr t~~R&f~rm~~i~~* 
6.X. The reflected wave. Using the ~onvo~~~o~ and the d~place~~t theo- 

rems, we find the original ~n~~~ in the ~-tr~for~~on (5, S) 
% 

Pa (r, 8, q - p* g (2,) - ??zf?“~~~~~* s @‘it ““g (3) d$ + (6.11 
I 0 

The second term in this expression explicitly represents the effect of the elastic proper- 
ties of the shell on the reflected wave. The third term shows how the nondeformable 
convexity of the reflector affects the form of the reflected wave {as compared with the 
incident wave), 

6. 2, The e m i t t e d w a v e s , Using the canvolution and displacement theorems, 
we find the original function in the ~~~sformat~o~ (5,6) 

3 +i 

7j = t -tj (i=1,2,3, Zj~~1) 

The jump intensity across the front of emitted waves z, LT 0 and ‘s, = 0 is weaker 
than the jump intensity across the wavefront zs = 0 by two orders of magnitude, The 
elastic properties of the shell affect each of the peripheral emitted waves. 

6 l 3. Di f f c ac ted w a v e s I Using the convolution and displaoment theorems we 
find the originat function in the L-transformation (5.10) 

(6*3) 



% I-y z, -f 23% (k - f), Q-g if 

Folfowing Friedlander, we evaluate the integrals. ZL (TV), (b = *jS, ‘is) using the 
method of steepest descent, The coordinate of the point of steepest descent is given by 

and its value is 8, I*=: ~~~/3~~~/~. Substituting this value of $0 into the standard formula 
of the steepest dwc;cent, we obtain the following approximate expressions: 

We note that the term containing 6% in (6.3) reflects explicitly the influence of the Us- 
tic properties of Ihe. shell on tie diffracted waves. Figure 2 &ows ~hema~ca~~y the dis- 

tdbutiun of the wavefronts in the fluid 
at a fixed instant of time (since the 
pattern is symmetric, only the lower 

part is shown), 

Thus, using the method of repeated 
integral transformations we found the 
asymptotic solution of the problem 

near the pressure wavefron~. The inde- 
pendent variables r, 8 and t can as- 

sume arbitrary values, but their combi- 
nations de~~rn~n~ng the distances from 

the wavefronts must invariably remain 

For each type of wave we have obtained the io~~ow~~g~ an equation of the wavefront, 

the intensify of the pressure jump or its first derivatXve~3 at the wavef~on~~ a formula des- 
crihing the change ia the pressnlr: amplitude with increasing distance from the wavefzoslt, 
and the variation in the pressure amplitude along the front. At small distances from the 

wavefronts the pressure amplitudes of all three wave types (~~ected,emitted and dif- 
fracted) depend on the elastic properties of the she& The strongest influence is exerted 
on the emitted wave generated by a shear wave propagating along the shell at the velo- 

city C,. 
We use the asymptotic expansions obtained as a starting point ta describe how the pro- 

perties of the shell can be found from the system of waves ” induced” by the shell. Let 
the source and sink of the acoustic waves bc situated at a single point (8 = 0). As we 

know, the reflected wave can yield the following data: distance from the shell can be 
found from the tag of the reflected wave, and the shell radius from t&e pure& geometri- 
cal reduction in the amplitude of the reflected wave compared with the ~a~rnit~d 
wave. The formula (6.1) shows that we can also determine the relative wave resistance 
(drag) co of t&e shell caused by the difference between the laws governing the pressure 
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variation with time in the reflected and transmitted waves 

If the sound source and receiver situated at the point (0 = 0) are supplemented with 

a pressure detector at some other fixed point (with 0 > es.+) , then from (6.2) it fol- 

lows that we can determine the velocity of propagation C, of the shear waves in the 

shell from the delay of the emitted wave generated by the shear wave propagating through 

the shell at the velocity C,. 
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The present paper deals with the oscillations of elastic plates in an ideal fluid. 
The optimizing problem of determining the thickness distribution for which the 
fundamental oscillation frequency is a maximum, is formulated, Necessary con- 
ditions for the extfemum are derived. The relation between the fundamental 
frequency (a functional) and the parameters of the problem is investigated. The 
asymptotic behavior of the thickness and deflection distributions at the edgesof 
the optimal plate is studied. An analytic solution of the optimization problem 
is given for thin, three-layer panels and it is shown that in this case the condi- 
tions of optimality are not only necessary. but also sufficient. The problem was 


